POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Foreign language - English for technology

Course

Field of study Year/Semester

Electrical Engineering 1/1

Area of study (specialization) Profile of study

general academic

Level of study Course offered in

Second-cycle studies English

Form of study Requirements

full-time elective

Number of hours

Lecture Laboratory classes Other (e.g. online)

0 0

Tutorials Projects/seminars

30 0

Number of credit points

2

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

mgr inż. Krystyna Ciesielska

e-mail: krystyna.ciesielska@put.poznan.pl

tel. +48 61 665 2853

Prerequisites

Language competence compatible with level B2 (CEFR); knowledge of selected field-specific (electrical engineering) vocabulary; ability to use various sources of information. Readiness to follow group work rules and to work in a team.

Course objective

To develop the student's ability to use academic and field-specific (electrical engineering) language effectively in speech and writing, in a number of complex tasks. To develop the student's ability to analyze critically field-specific texts. To encourage buildup of field-specific vocabulary.

Course-related learning outcomes

Knowledge

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

The student understands the differences between written and spoken forms of English. The student has acquired field-specific vocabulary related to renewable energy sources and sustainable growth, energy storage, smart and environmentally-friendly solutions - smart home, passive house, modern cars.

Skills

The student is able to write an email, an abstract of their diploma thesis, a summary of a scientific article in English, using an appropriate linguistic and grammatical repertoire. The student is able to give a presentation on a field-specific or popular science topic (in English), and discuss general and field-specific issues, analyzing constraints and feasible solutions. The student is able to understand and analyze international, field-specific literature, assess the merit of resource materials, and use incomplete/partially unreliable resources. The student is able to participate in a discussion on a field specific/professional topic, using 'ad rem' arguments.

Social competences

The student is able to communicate effectively in general and field-specific areas, and communicate in English in public.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Regular assessment of in-class performance and home assignments: individual and/or group presentations, written tasks, participation in a debate. Optionally, a written quiz featuring a battery of tests. Successful completion of assignments is required to obtain a pass.

Programme content

Writing emails, abstracts and summaries. Presentations. Topics: Modern ways of generating electrical energy. Energy policies in Poland and the EU. Energy storage. Comparison of selected types of electrical plants. Advances/smart solutions in electrical engineering.

Teaching methods

Classroom activities guided by the communicative approach.

Bibliography

Basic

Dubis, A./ Firganek, J. 2006. English through Electrical and Energy Engineering. Kraków: Studium Praktycznej Nauki Języków Obcych Politechniki Krakowskiej.

Additional

Banks, T. 2012. Writing for Impact. Cambridge: Cambridge University Press

Bonamy, D. 2011. Technical English. Pearson Education Limited. (Level 3, Level 4)

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Brieger, N., and Pohl, A. 2002. Technical English Vocabulary and Grammar. Summertown: Summertown Publishing.

Campbell, S. 2009. English for the Energy Industry. Oxford: Oxford University Press.

Esteras, S. R., and Fabré, E. M. 2007. Professional English in Use for Computers and the Internet. ICT. Cambridge: Cambridge University Press.

Gajewska-Skrzypczak, I. and Sawicka, B. 2013. English for Electrical Engineering. Poznań: Publishing House of Poznan University of Technology.

Murphy, R. 2012. English Grammar in Use. Cambridge: Cambridge University Press. (all levels)

Oshima, A. and Hogue, A. 2006. Writing Academic English. White Plains: Pearson Education, Inc.

Internet sources.

Breakdown of average student's workload

	Hours	ECTS
Total workload	55	2,0
Classes requiring direct contact with the teacher	30	1,0
Student's own work (literature studies, preparation for tutorials,	25	1,0
preparation for tests, team projects preparation) ¹		

_

¹ delete or add other activities as appropriate